Definition:-
Constants refer to fixed values that the program may not alter and
they are called literals. Constants can be of any of the basic data
types and can be divided into Integer Numerals, Floating-Point Numerals,
Characters, Strings and Boolean Values. Again, constants are treated just like
regular variables except that their values cannot be modified after their
definition.
Integer Literals:-
An integer literal can be a
decimal, octal, or hexadecimal constant. A prefix specifies the base or radix:
0x or 0X for hexadecimal, 0 for octal, and nothing for decimal.
An integer literal can also have
a suffix that is a combination of U and L, for unsigned and long, respectively.
The suffix can be uppercase or lowercase and can be in any order.
Here are some examples of integer
literals −
212 // Legal
215u // Legal
0xFeeL // Legal
078 // Illegal: 8 is not an octal digit
032UU // Illegal: cannot repeat a suffix
Following are other examples of various types of Integer literals –
85 // decimal
0213 // octal
0x4b // hexadecimal
30 // int
30u // unsigned int
30l // long
30ul // unsigned long
Floating-point
Literals:-
A floating-point literal has an integer part, a decimal point, a
fractional part, and an exponent part. You can represent floating point
literals either in decimal form or exponential form.
While representing using decimal form, you must include the
decimal point, the exponent, or both and while representing using exponential
form, you must include the integer part, the fractional part, or both. The
signed exponent is introduced by e or E.
Here are some examples of floating-point literals −
3.14159 // Legal
314159E-5L // Legal
510E // Illegal: incomplete exponent
210f // Illegal: no decimal or exponent
.e55 // Illegal: missing integer or fraction
Boolean Literals:-
There are two Boolean literals
and they are part of standard C++ keywords −
·
A value of true representing true.
·
A value of false representing false.
You should not consider the value
of true equal to 1 and value of false equal to 0.
Character
Literals:-
Character literals are enclosed in single quotes. If the literal
begins with L (uppercase only), it is a wide character literal (e.g., L'x') and
should be stored in wchar_t type of variable . Otherwise, it
is a narrow character literal (e.g., 'x') and can be stored in a simple
variable of char type.
A character literal can be a plain character (e.g., 'x'), an
escape sequence (e.g., '\t'), or a universal character (e.g., '\u02C0').
There are certain characters in C++ when they are preceded by a
backslash they will have special meaning and they are used to represent like
newline (\n) or tab (\t). Here, you have a list of some of such escape sequence
codes −
Escape sequence
|
Meaning
|
\\
|
\ character
|
\'
|
' character
|
\"
|
" character
|
\?
|
? character
|
\a
|
Alert or bell
|
\b
|
Backspace
|
\f
|
Form feed
|
\n
|
Newline
|
\r
|
Carriage return
|
\t
|
Horizontal tab
|
\v
|
Vertical tab
|
\ooo
|
Octal number of one to three digits
|
\xhh . . .
|
Hexadecimal number of one or more digits
|
INPUT:-
#include <iostream>
using namespace std;
int main() {
cout << "Hello\tWorld\n\n";
return 0;
}
When the above code is
compiled and executed,
OUTPUT:-
Defining
Constants:-
There are two simple ways in C++ to define constants −
·
Using #define preprocessor.
·
Using const keyword.
The #define
Preprocessor:-
Following is the form to use #define preprocessor to define a
constant −
INPUT:-
#include <iostream>
using namespace std;
#define LENGTH 10
#define WIDTH 5
#define NEWLINE '\n'
int main() {
int area;
area = LENGTH * WIDTH;
cout << area;
cout << NEWLINE;
return 0;
}
When the above code is compiled and executed.
OUTPUT:-
The const
Keyword:-
You can use const prefix to declare constants
with a specific type as follows −
INPUT:-
#include <iostream>
using namespace std;
int main() {
const int LENGTH = 10;
const int WIDTH = 5;
const char NEWLINE = '\n';
int area;
area = LENGTH * WIDTH;
cout << area;
cout << NEWLINE;
return 0;
}
When the above code is compiled and executed,
OUTPUT:-
50
Thank You!